Mach 1433 Linear Algebra and Analytic Geometry

Monday 9 October 2023
Instructor: dr Adam Abrams

Topics

Vectors and matrices

- Vector operations
- Lines and planes
- Linear independence
- Matrix operations
- Systems of linear equations

Complex numbers and polynomials

- Rectangular and polar forms
- Complex conjugate
- Zeros of polynomials
- Factoring and remainders

Course website

All course policies can be found at

http://theadamabrams.com/1433

Lecture slides and problem sets will also be posted to this site throughout the semester.

Grades will be recorded on ePortal:
http://eportal.pwr.edu.pl/

Grading policy

The same grade is used for 1433W and 1433C.

- Six quizzes (5 points each), but the lowest score is ignored!
- Two exams (15 points each).
- Participation (5 points).

This makes $5 \times 5+15+15+5=60$ total possible points.

Points	$[0,30)$	$[30,36)$	$[36,42)$	$[42,48)$	$[48,54)$	$[54,60]$
Grade	2.0	3.0	3.5	4.0	4.5	5.0

This might change. If so, there will be an announcement.

Grading policy

The same grade is used for 1433 W and 1433C.

Points	$[0,30)$	$[30,36)$	$[36,42)$	$[42,48)$	$[48,54)$	$[54,60]$
Grade	2.0	3.0	3.5	4.0	4.5	5.0

More than 3 unexcused absences after 13 Oct \rightarrow course grade 2.0.
You can work together on task lists (which are not graded), but quizzes and exams are individual. All work can be checked in one-on-one meeting.

- Cheating on quizzes \rightarrow quiz grade 0 .
- Cheating on exams \rightarrow course grade 2.0.

Accessibiliky

Accessibility and Support Department for People with Disabilities

- Office: building C-13 room 109
- Website: https://ddo.pwr.edu.pl/
- Email: pomoc.n@pwr.edu.pl

If you need extra time on exams, course materials in a different format, or other accommodations, please talk to me!

English Language and some polls

poles

Poles

polls

Draw a cube

- If multiple people draw or talk about a cube, we need to be sure we are all thinking of the same thing.

vectors as ...

The word "vector" can mean many things.
At times we will think of a vector as

- a list.
- a point (that is, a location in 2D plane or 3D space).
- an arrow starting at the origin.
- an arrow starting anywhere.

There is another option:

- an element of an abstract vector space,
but we won't use that idea of a vector in this class.

Arrows
A vector is a list of numbers.

- We can write the same list of numbers in many formats. For example,

$$
(5,3,8) \quad\langle 5,3,8\rangle \quad\left[\begin{array}{lll}
5 & 3 & 8
\end{array}\right]
$$

are all exactly the same vector.

- Each numbers is a component of the vector.
- For $[5,3,8]$, the " 1 st component" is 5 , the "2nd component" is 3 , etc.
- We often label the components with subscripts: $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$.

But sometimes we instead label a whole vector this way: $\overrightarrow{u_{1}}$ and $\overrightarrow{u_{2}}$.

Vectors as Points

A vector is a point in 2D or 3D space.

Vectors as
 Arrows

A vector is something that has a magnitude and a direction.
In other words, it is an arrow.

A vector is something that has a magnitude and a direction. In other words, it is an arrow.

Vectors as

A vector is something that has a magnitude and a direction. In other words, it is an arrow.

Vectors as $\frac{1}{\text { Letatent }}$
 Arrows

A vector is something that has a magnitude and a direction. In other words, it is an arrow.
Depending on context, a vector like $\langle 5,1\rangle$ might refer to

- any arrow that points in a direction 5 right and 1 up, or
- the specific arrow from $(0,0)$ to $(5,1)$, or
- the point $(5,1)$.

Vector variables

In different text/videos, a vector variable might be written as any of these:

Often we use letters u, v, w or a, b, c for vectors.
If the vector has a specific meaning, we might use a letter related to that meaning.

- In physics, \vec{F} for force.
- The zero vector is $\overrightarrow{0}=\langle 0,0\rangle$ in 2 D and $\overrightarrow{0}=\langle 0,0,0\rangle$ in 3D.

Two vectors are equal if they have the same size and the components of the two vectors are equal (that is, their first components are equal, and their second components are equal, and so on).

- Example: $\langle 5,1,9\rangle=\left\langle 2+3, \frac{6}{6}, 13-4\right\rangle$

As with numbers, sometimes an equation describes one specific value

- $\vec{u}=\langle 1,-3\rangle$
- $x=-8$
- and sometimes there are many values that make an equation true:
- $\vec{u}=5$
- $x^{2}-4 x+3=0$

Magnitude

The magnitude (or length or norm) of the vector $\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ is

$$
\vec{v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} .
$$

In 2D or 3D, this is exactly the physical length of the arrow, or the length of the line segment from the origin to the point \vec{v}.

Magnitude

The magnitude (or length or norm) of the vector $\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ is

$$
\vec{v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} .
$$

In 2D or 3D, this is exactly the physical length of the arrow, or the length of the line segment from the origin to the point \vec{v}.
Example: for $\vec{v}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$ we have $\vec{v}=\sqrt{20}=2 \sqrt{5}$ because

$$
\text { side length } 4
$$

Vector addition

As lists, vectors are added by adding each coordinate.

- Example: $\langle 9,-4\rangle+\langle 5,6\rangle=\langle 14,2\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]+\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
15
\end{array}\right]
$$

As arrows, add vectors "tip-to-tail" (also called "parallelogram method").

Vector addition

As lists, vectors are added by adding each coordinate.

- Example: $\langle 9,-4\rangle+\langle 5,6\rangle=\langle 14,2\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]+\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
15
\end{array}\right]
$$

As arrows, add vectors "tip-to-tail" (also called "parallelogram method").

Vector addition

As lists, vectors are added by adding each coordinate.

- Example: $\langle 9,-4\rangle+\langle 5,6\rangle=\langle 14,2\rangle$
- Example:

$$
\left[\begin{array}{l}
5 \\
8
\end{array}\right]+\left[\begin{array}{c}
-2 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
15
\end{array}\right]
$$

As arrows, add vectors "tip-to-tail".

Mulliplication

What does 5×3 mean?

- More advanced: no pictures, just $5+5+5$.

What does $5 \times \frac{1}{3}$ mean? $\quad 5 \times 9.2 ? \quad 7.65 \times(-12)$?

- Depending on the context, multiplication can have different meanings or interpretations.
- This is also true for subtraction, and really for almost anything in math.

What is $\left[\begin{array}{c}8 \\ -3\end{array}\right]+\left[\begin{array}{c}8 \\ -3\end{array}\right]$?

We can also write this as $2\left[\begin{array}{c}8 \\ -3\end{array}\right]$.

In general, $2 \vec{a}=\vec{a}+\vec{a}$, and $3 \vec{a}=\vec{a}+2 \vec{a}$, etc.
What about $2.5 \vec{a}$ or $\sqrt{3} \vec{a}$?

Scalar multiplication

For this class, a scalar is a real number.
Given a scalar s and a vector $\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$, we can multiply s and \vec{v} to get

$$
s \vec{v}=\left\langle s v_{1}, s v_{2}, \ldots, s v_{n}\right\rangle .
$$

Examples:

- $3\langle 8,1\rangle=\langle 24,3\rangle$
- $\frac{1}{2}\langle 8,1\rangle=\left\langle 4, \frac{1}{2}\right\rangle$
- $4\langle-3,9.1\rangle=\langle-12,36.8\rangle$
- $-2\langle 5,-4\rangle=\langle-10,8\rangle$
- $0\langle 5,7\rangle=\langle 0,0\rangle$

We say that \vec{a} is a scalar multiple of \vec{b} if there is some number (scalar) s such that $\vec{a}=s \vec{b}$.

Examples:

- $\langle 24,3\rangle$ is a scalar multiple of $\langle 8,1\rangle$ (we can use $s=3$).
- $\langle 4,0.5\rangle$ is a scalar multiple of $\langle 8,1\rangle$ (we can use $s=0.5$).
- $\langle 24,10\rangle$ is not a scalar multiple of $\langle 8,1\rangle$.

Geometrically, $s \vec{v}$ is a "stretched" version of \vec{v}.

Two vectors \vec{u} and \vec{v} are parallel if $\vec{u}=s \vec{v}$ for some $s \neq 0$.

- Some people require $s>0$ and say, for example, that $\langle 3,2\rangle$ and $\langle-6,-4\rangle$ are "anti-parallel". Some people call them parallel.
- $\overrightarrow{0}$ is a scalar multiple of any \vec{v}, but $\overrightarrow{0}$ is not parallel to \vec{v}.

Basis vectors

Later, we will talk about the general idea of a "basis", but for now we will use just one 2D example and one 3D example.

- In 2D, the standard basis vectors are

$$
\vec{\imath}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \vec{\jmath}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text {. }
$$

It's also common to write "hats" instead of arrows above the letters: $\hat{\imath}, \hat{\jmath}, \hat{k}$.

- In 3D, the standard basis vectors are

$$
\vec{\imath}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and } \vec{\jmath}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { and } \vec{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

We can write any vector using scalar multiples, these basis vectors, and vector addition.

Basis veclors

We can write any vector using scalar multiples, these basis vectors, and vector addition.

Examples:

- $\left[\begin{array}{l}5 \\ 2\end{array}\right]=\left[\begin{array}{l}5 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 2\end{array}\right]=5\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1\end{array}\right]=5 \vec{\imath}+2 \vec{\jmath}$
$\begin{array}{ll}\bullet\left[\begin{array}{c}6 \\ 0.91 \\ -2\end{array}\right]=6 \vec{\imath}+0.91 \vec{\jmath}-2 \vec{k} & \bullet\left[\begin{array}{l}a \\ b\end{array}\right]=a \vec{\imath}+b \vec{\jmath} \\ \bullet\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]=4 \vec{\imath}+\vec{k} & \bullet\left[\begin{array}{l}5 \\ 2 \\ 0\end{array}\right]=5 \vec{\imath}+2 \vec{\jmath}\end{array}$

Subtraction

We can subtract vectors using coordinates.

- Example: $\langle 9,-4\rangle-\langle 5,6\rangle=\langle 4,-10\rangle$
- Example: $\left[\begin{array}{l}5 \\ 8\end{array}\right]-\left[\begin{array}{c}-2 \\ 7\end{array}\right]=\left[\begin{array}{l}7 \\ 1\end{array}\right]$

What does $\vec{u}-\vec{v}$ mean geometrically?

- We could first find the scalar multiple $-\vec{v}=(-1) \vec{v}$ and then use the geometric method of addition ("tip-to-tail") to draw $\vec{u}+(-\vec{v})$.
- What does $a-b$ mean for numbers?

What does $5-3$ mean on a number line?

Answer: The number $5-3$ describes how to move from 3 to 5 .

In general, $a-b$ describes how to move from b to a.

Subtraction

What does 5-3 mean on a number line?

Answer: The number $5-3$ describes how to move from 3 to 5 .

- To go from 5 to 3 instead, we move left, which is why $3-5$ is negative.

In general, $a-b$ describes how to move from b to a.

Subtraction

The vector $\vec{u}-\vec{v}$ points from the end of \vec{v} to the end of \vec{u}.

Note: The tails (start) of \vec{u} and \vec{v} must be at the same place to use this method.

In general, $a-b$ describes how to move from b to a.

Subtraction

The vector $\vec{u}-\vec{v}$ points from the end of \vec{v} to the end of \vec{u}.

Note: The tails (start) of \vec{u} and \vec{v} must be at the same place to use this method.

- This agrees with finding $\vec{u}-\vec{v}$ by adding $\vec{u}+(-\vec{v})$ tip-to-tail.

Vector $\vec{u}-\vec{v}$ points from the end of \vec{v} to the end of \vec{u}.

Note: The tails (start) of \vec{u} and \vec{v} must be at the same place to use this method.

If we think of \vec{a} and \vec{b} as points,
then $\vec{a}-\vec{b}$ literally goes from \vec{b} to \vec{a}.

Summary: + and -

- In terms of arrows, we have "tip-to-tail addition". Example:

- If \vec{a}, \vec{b} start at the same point, then $\vec{a}-\vec{b}$ points from the end of \vec{b} to the end of \vec{a}.

Multiplication

There are actually many kinds of multiplication involving vectors:

- Scalar multiple $s \vec{u}$
- Dot product $\vec{u} \cdot \vec{v}$
- Cross product $\vec{u} \times \vec{v} \int$ only use chese.
- Outer product $\vec{u}^{\top} \vec{v}$ for rows
- Convolution $\vec{u} * \vec{v}$
- Kronecker product $\vec{u} \otimes \vec{v}$
- Hadamard product $\vec{u} \odot \vec{v}$

Never write $\vec{a} \vec{b}$ without a symbol in between the vectors!

For fractions, $\frac{1}{2} \cdot \frac{1}{3}=\frac{1 \cdot 1}{2 \cdot 3}$ (easy), but $\frac{1}{2}+\frac{1}{3}$ is not $\frac{1+1}{2+3}$.
For vectors, it's the opposite:

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
1+1 \\
2+3
\end{array}\right] \text { (easy). }} \\
& {\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3
\end{array}\right] \text { is not }\left[\begin{array}{l}
1 \cdot 1 \\
2 \cdot 3
\end{array}\right] \text {. If you do this calculation on a quiz, you will lose points. }}
\end{aligned}
$$

Dot product / scalar product

The dot product of two vectors $\vec{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$,
also called the scalar product or inner product, is written as $\vec{a} \cdot \vec{b}$ (said out loud as "A dot B"). It is a number that can be computed as either

- $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}$
or
- $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos ($ angle between \vec{a} and $\vec{b})$.

Dot product / scalar product
 The dot product of two vectors $\vec{a}=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$,

also called the scalar product or inner product, is written as $\vec{a} \cdot \vec{b}$ (said out loud as "A dot B"). It is a number that can be computed as either

- $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
or
- $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos ($ angle between \vec{a} and $\vec{b})$.

Today's schedule

Officially there is a problem session from 12:15-13:00 today.

- We will discuss the topics mentioned on the survey.
- If you can already answer the tasks below, you can skip today's session.

```
Algebra Expand (2x+3)(x-5).
Lines Does the point (3,8) lie on the line y=4+8(x-3)?
    The point (3, -20)? The point (3,4)?
Quadratic f. Solve }\mp@subsup{x}{}{2}-2x-9=0
Exponents Re-write (2 2}\mp@subsup{)}{}{2}\cdot\mp@subsup{2}{}{10}\mathrm{ in the form 2■.
Systems
            Solve {}\begin{array}{rl}{3x+1}&{=4}\\{x-y}&{=3.}
Trig
    What is }\operatorname{cos}(3\mp@subsup{0}{}{\circ})
    Find a value of }0\mathrm{ for which }\operatorname{sin}(0)=\frac{1}{\sqrt{}{2}}\mathrm{ and }\operatorname{cos}(0)=\frac{-1}{\sqrt{}{2}}\mathrm{ .
```

